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Two Papers on Graph Embedding Problems

James B. Saxe DTIC
January 1980 ELECTE

MAR 8 SSiDB
Abstract

This report contains two independent papers on problems concerned with graph
embedding-i.e., assignment of the vertices of a graph to points In a metric space
subject to specified constraints. The first paper In this report, "Embeddabity of
weighted graphs in k-space is strongly NP-hard," examines the problem of assigning
the vertices of a weighted graph to points in a k-dimensional Euclidean space
subject to the constraint that any two vertices connected by an edge must be
assigned to points whose distance is the weight of that edge. We prove (by
reduction from 3-satisfiability) that it is NP-hard to determine whether such an
assignment exists, even when kWl and the edge weights are restricted to take on
the values I and 2. The same reduction used in this proof forms the basis of proofs
of the NP-completeness of several variants of the original problem. The second
paper, "Dynamic-programming algorithms for recognizing small-bandwidth graphs in
polynomial time," deals with the problem of bandwidth mnlnlmizatioh, in which we are
given a graph, 6, and a positive integer, k, and asked whether It is possible to
assign the vertices of Q to distinct integers subject to the constraint that no edge
of G may have its endpoints mapped to integers which differ by more than k.
Although the general problem has been proven (by C.H. Papadimitriou) to be
NP-complete, we show that It can be solved in polynomial time for any fixed value of
k. As In the first paper, the methods used to achieve the principal result are
extended to a number of related problems.

This research was supported In part by the Office of Naval Research under Contract
NO001 4-76-C-0370.
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Embeddability of Weighted Graphs in
k-Space is Strongly NP-Hard

James B. Saxe
Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15218

Abstract

In this paper we investigate the complexity of embedding edge-weighted graphs
into Euclidean spaces: Given an (incomplete) edge-weighted graph, 6, can the
vertices of Q be mapped to points In Euclidean k-space in such a way that any two
vertices connected by an edge are mapped to points whose distance Is equal to the
weight of the edge? We prove (by reduction from 3-satisfiability) that this problem
is strongly NP-hard. Indeed, it Is NP-compete even when k:l and the edge weights
are restricted to take on the values I and 2. We also investigate the related
problems of approximate embeddability (In which G Is accepted If Its vertices can
be embedded In k-space so that the distances between connected vertices match
the corresponding edge weights within some small tolerance but Q is rejected if
there Is no mapping which meets some other, larger tolerance) and the problem of
ambiguous embedding (in which we are given both a graph, G, and an embedding for
G and asked whether a second embedding exists which Is not congruent to the
first). We show that these related problems are just as hard as the ordinary
embeddability problem.

This research was supported In part by the Office of Naval Research under Contract
N00014-70-C-0370.
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1. Introduction

In many applications of distributed sensor networks1 there arises the problem of

determining the locations of sensors from incomplete (and possibly errorful)

Information about their distances from each other and from fixed landmarks. This

prompts us to ask the following geometric questions:

- Given an Incompletely specified distance matrix for a set of points In
k-space,2 when Is the complete distance matrix uniquely determined?

- Assuming the distance matrix to be uniquely determined, what Is the
computational complexity of actually finding the unspecified
distances?

In this paper we consider the closely related problem of embeddability:

Given a (purported) Incompletely specified distance matrix for a get of
points in k-space, determine whether there can actually exist a set of
points satisfying that matrix.

In Section 2 we Introduce definitions that will allow us to phrase several forms of

the embeddability problem In terms of edge-weighted graphs. in Section 3, we give

a simple proof that a 1-dimensional version of the embeddablilty problem Is

NP-complete. In Section 4, we show the more difficult and surprising result that this

same 1-dimensional problem is strongly NP-complete In the sense of Garey and

Johnson [1979] and extend this result to higher dimensions. In Section 5 we

address some naturally-arising questions concerning the suitability of the Turing

Machine model for a problem that Inherently Involves real numbers, and show that

the proofs used In Section 4 have relevance to an "approximate embeddablllty

problem on the reals. In Section 8 we discuss versions of the problem In which one

way to complete an incompletely specified distance matrix Is known and It Is desired

to determine whether a second solution exists. We show that these versions are no
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2 WEIGHTED GRAPH EMBEDOABILITY

easier than corresponding versions studied earlier In the paper. Finally, the

contributions of the paper are summarized In Section 7.

2. Fundamental Concepts

We begin by Introducing the concepts of weighted graph and embedding:

Definitions:
A weighted graph, G = <V,E,W>, is an ordered triple such that each element of

E Is an unordered pair of distinct elements of V and W is e function mapping E

Into [0,00). The elements of V are called the vertices of G. The elements of E

are called the edges of G. For each edge, e, of G, the real number W(e) Is

called the weight of e in G (or simply the weight of e).

Definitions:
Let G = <V,E,W> be a weighted graph, and let k be a positive Integer. Then an

embeddinQ of G In k-space Is a function, f, mapping V Into the k-dimensional

Euclidean space, IRk, such that, for each edge, e = (v,w), of G, If(v)-f(w)l •

W(e). G Is said to be embeddable In k-space, or k-embeddable, Iff there

exists an embedding of G in k-space.

For any positive Integer, k, the problem of k-embeddability may now be stated as

follows:

Probilem (k-Embeddability):

Given an arbitrary weighted graph, G, determine whether G Is k-embeddable.

In Sections 3 and A we will wish to restrict the class of weighted graphs under

consideration, so that the notion of NP-completeness (which Is defined in terms of

Turing machines) will make sense In relation to Embeddability. We therefore

Introduce the following definition.

Definition:

Let S be any subset of [O,00). Then, an S-weighted graph is a weighted graph,

G, such that the weight of each edge of G Is an element of S. We will

generally refer to V-weighted graphs as integer-weighted graphs.

5J



WEIGHTED GRAPH EMBEDDABILITY3

In Section .5 we will return to the question of graphs with real edge weights.

3. The Weak NP-completeness of I -Embeddability

In this section, we demonstrate the weak NP-completeness of the problem of

1 -Embeddability of Integer-weighted graphs. To do this, we first show

constructively that 1 -Etubeddability Is In NP. We then use a reduction from

PartItion3 to show completeness.

Theorem 3.1:
I -Embeddability of Integer-weighted graphs Is In NP.

Proof:
To check the I -embeddablity of any Integer-weighted graph, a NDTM need
only

1. Partition the graph Into disjoint connected subgraphs,
2. Guess the direction of each edge of the graph, and
3. Check the consistency of each disjoint connected subgraph.

These operations can clearly be carried out In (nondeterministic) polynomial
time. 0

Theorem 3.2:
1 -Embeddablity of Integer-weighted graphs Is NP-complete.

We will show the NP-completeness of 1 -Embeddabilty by reduction from
Partition. Let S a (81, a2, - - , an) be a muitiset of positive Integers. In
polynomial1 time we may construct from S a description of the cyclic graph

3Tho Partition problem calls for partitioning a (nmut-)s~t of integers Wno two smbsets with ea" um, ard Is i

known to be NP-complete: see Garey and Jolvuson 1979].

T7he construction used in I& theorem ard list wed in tOi proof of Loomm 4.4 wvere INdependent devloped
by Y~mn ( 1978]. who used fthm to show the (weak) UP-coqi~tenes of 2-EnhedibftV of htegv-weIol
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G (V,E,W> Whose edge weights are the a1, that Is

V a(vo,....m1vn..)o
E v ((viv(j+1 mod n)) I 0!51<n), and
W 'I M(vj-v(i+1 mod n)),al) I 011(n).

If f 1s an embedding of G In the line, then the mutisets

S1 z (a, f(vI) ( f(v(+1 mod n))) and
32a(a 1 If(V1) > f (V(1.,.1 mod n)))

constitute a partition of S Into two pieces whose sums are equal. Similarly,
any such partition of S yields a 1 -Embedding of G. 03

4. The Strong NP-completeness of 1 -Embeddability

We now come to our key theorem, which asserts that the problem of determining

whether an Integer-weighted graph i3 embeddabie In the line remains NP-complete

even If the edge weights are restricted to be no greater than four.

Theorem 4.1
1 -Embeddabillty of (1,2,3,4) -weighted graphs Is NP-compiete.

Proof:
Our proof consists of a reduction from 3-Satlifiabllty (which was shown to be
NP-complete by Cook (1971]J) to I -Embeddability of (1.2.8,4)-weighted
graphs. Let E be any Boolean expression In conjunctive normal form with three
lterals In each clause. Our goal will be to construct a (1.2,3,4)-weighted
graph, 6, which Is embeddable 1ff E Is satisfiable. We let n be the number of
vlariables occurring In E and m be the number of clauses In E. Throughout this
proof, we will use the convention that the variables of E will be Indexed by 0"
(which wil therefore range from i through n), the clauses of E wil be Indexed
by "j" (ranging from 1 through in), and the literals within each clause will be
Indexed by "V" (ranging from 1 through 8). Thus E has the form

where each clause, Cj, has the form

Cj IL
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and each literal, Ljk, has the form

Lj,kwX i Or Lj,kuaYi

for some I, 1:51n. We will also use throughout the proof the convention that
"f" represents a hypothetical 1-embedding of G (or of the part of G we have
coQnstructed so far).

To construct G, we will use the "building blocks" shown In Figure 4.1. We
begin with the subgraph shown in Figure 4.1(a). We assume without loss of
generality that f(A) a 0 and f(B)- 2. This assumption constrains f to assign
each of the X, (which we Identify with the variables of E) to 1 or -1 (which we
identify with the Boolean values TRUE and FALSE, respectively). Note that
each possible mapping of the X, Into (1 ,-1) corresponds to some assignment of
truth values to the XI. In the remaining steps of the construction, we will add
edges, which have precisely the effect of constraining f to map the Xi to
(1,-1) In such a way that the corresponding assignment of the X1 satisfies E.

The next step in our construction is to augment G by adding the edges shown
in Figure 4.1(b) for. each i, 1_iSn. The heavy lines In that figure represent
already-existing edges. We now have vertices N such that for each variable,
X, f maps X, to 1 (TRUE) iff it maps 11 to -1 (FALSE), and vice-versa. The
possible mappings from (X1}U(I) to (1,-1) under f now correspond precisely
to the possible (consistent) truth assignments of the X, and RI, but still without
regard to whether those assignments satisfy E.

For the final step of our construction, we add the edges Indicated in Figure
4.1(c) for each J, 1Sjm. The vertices Lj,k are Identified with the Xa and R,
precisely as the corresponding literals, Ljk, are formally Identical with the X,
and Al. Once again, the heavy lines Indicate edges which were present at
earlier stages of the construction. Careful study of- the graph In Figure 4.1(c)
will reveal that It Is Impossible to embed it In the line In such a way that A Is
sent to 0, B Is sent to 2, and all three of the Lj,k are sent to -1 (FALSE), but If
one or more of the Lj,k are to be sent to 1 (TRUE), then an embedding Is
possible (in fact, exactly one such embedding is possible). Thus, for each J,
lSJ;m, the effect of the edges In Figure 4.1(c) Is precisely to constrain f to
map the X, to (1 ,-1 ) in such a way that the corresponding truth assignment for
the XI satisfies clause Cj.

The effect of all the edges of Q Is therefore to constrain f to map the X, to
(1,-1) in such a way that the corresponding assignment of truth values to the
X, satisfies E. If there Is no such assignment then Q Is not 1-embeddable. If
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B E3

2 2 1X

A A 2

X1 X2  Xn Xi
(a) Implementation of variables. (b) implementation of a negative literal.

22

-j,2

A

(c) Implementation of a disjunctive clauta.

Figure 4.1 Building blocks for transforming an expression In 3-CNF to a graph.

there are any assignments satisfying E, then for each such assignment G can
be (uniquely) 1-embedded by a lunction sending A to 0 and B to 2 and

mapping the Xi to (1,-1) in accordance with that assignment. Finally, It Is

clear that the preceding construction can be carried out In polynomial time.

This completes the proof. 0

For future reference, we note that the construction used In the preceding proof Is

.1i
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such that the 1 -embeddings of G are In one-to-one correspondence (up to

translation and reflection) with the truth assignments that satisfy E. We note also

that the preceding theorem immediately yields the following result:

Corollary 4.2:

1 -Embeddabillty of integer-weighted graphs is strongly NP-complete.

Proof:
5

It suffices to note that translation of a sequence of numbers in (1,2,3,4) from

binary to unary can be accomplished in linear time and causes only a constant

factor increase in the length of the Input. 0

We may also Immediately derive:

Corollay 4.3:
1 -Embeddability of (1,2)-weighted graphs Is NP-complete.

Proof:

Consider the graphs shown in Figure 4.2. By replacing edges of weights 3 and
4 with configurations T3  and T4 , respectively, we can reduce any

(1,2,3,4)-weighted graph, 6, to a (1,2)-weighted graph, H, that is

1 -embeddable Iff G Is 1 -embeddable. 0

2 2
Tk :

T3jj 7 T4:
2 2 2

Figure 4.2. Building long "edges" from short edges.

In fact, for any positive Integer, k, the graph H so constructed will be k-embeddable

6Another NP-complete problem invoving a form of graph embedding is the Bandwidth Minimzation Problem (see
Papedlnitriou (1976). In Apped I we exhibit a reduction from Bandwift Minnimzation to Embeddiaty. Tht
reduction suffices to show the strong NP-competeness of 1-Enfeddal lty of intager-weihted graphs, athough It
Is somnewhl less economical than the construction given in Theorem 4.1. Also, It cannot be ww a a basie for
dering the results presented in Sections $ and 6.
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Iff G Is k-embeddable. We may use this fact to prove our next lemma.

4 8

Ri: 3F7713  5 3
4 8

Figure 4.3. Gadgets for adding a dimension.

Lemma 4.4:

For every positive integer, k, k-Embeddability of (1,2)-weighted graphs Is

NP-hard.

Proof:
Consider the graphs shown in Figure 4.3. Given any (1,2)-weighted graph, G,

each edge of G having weight 1 may be replaced by the R1 and each edge of

weight 2 by R2 , yielding a graph, H, which, for any positive Integer, k, Is

embeddable in (k+l)-space iff G is embeddable in k-space. By the methods of

Theorem 4.3, H may be transformed into a (1,2)-weighted graph, J, that Is

embeddable In precisely those spaces In which H Is embeddable. The

transformation from G to J Involves only a constant factor Increase In the

length of a specification of the graph and can clearly be accomplished In

polynomial time. It follows by mathematical Induction that, for any positive

integer, k, 1-Embeddability Is polynomial-time reducible to k-Embeddabillty for

(1,2)-weighted graphs. 0

Once again, we note that the (k+l)-embeddings of J will be In one-to-one

correspondence (up to translation, rotation and reflection) with .the k-embeddings of

G. Finally, Theorem 4.4 gives us the following result.

Coroliary 4.5:
Let k be any positive Integer. Then k-Embeddability of Integer-weighted

graphs Is strongly NP-hard.

Proof:

This result follows froth Lemma 4.4 and the same reasoning used In the proof of
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Corollary 4.2. 0

5. Graphs with Real-Valued Edge Weights

We will now discuss the applicability of NP-completeness to problems whose

Inputs are real numbers In general, and to embedding problems In particular. A

number of reasons for doubting the relevance of the Turing Machine model seem

naturally to present themselves.

- NP-completeness Is defined for language recognition problems on
Turing Machines, which Inherently can deal only with Integers and not
with arbitrary reals.

- Given a "random" embedding of an unweighted graph into a Euclidean
space, any two of the edge weights Induced by the embedding will be
Incommensurable with probability 1. Moreover, If the graph Is
overconstrained and the dimension of the space Is at least two, then
rounding the Induced edge-weights to multiples of some small distance
will almost always produce a weighted graph that is not embeddable in
the space.

In order to deal with these Issues, we introduce the notion of approximate

embeddings.

Definitions.

Let G be a weighted graph and 4 be a non-negative real number. Then an

j-approximate k-embedding of G is a function, f, that maps the vertices of G
Into Euclidean k-space such that for every edge, (u,v), of G,

1 -1 ( If(u)-f(v)I/W((u,v)) ( 1 +.c If such an embedding exists, then Q Is said to
be i-approximately k-embeddable.

Given a positive Integer, k, and two reals, el and 42, such that 0 ;1 l S 42, we may

now define the following more "robust" embeddability problem:

Problem (41 A 2 -Approximate k-Embeddability):

Given a weighted graph, G, assert correctly either (1) that G is

42 -approximately k-embeddable (this Is called accepting G) or (2) that Q Is not

t 1 -approximately k-embeddable (this Is called rejecting G).
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Note that If the least t for which G is (-approximately k-Embeddable lies in the

Interval (C1, 2], then it Is permissible either to accept or to reject G. In this problem

definition, we have attempted to capture, without introducing inordinately many

complexities of detail, the essential problem of embedding as it would apply to real

computers given inexact data.

We now wish to Investigate the computational complexity of 41,4 2 -Approximate
Embeddability problems. Is It possible, for example, to solve all such problems where

1 Is strictly less than (2 in time polynomial in the size of a specification of G (where
the degree of the polynomial, or even Just the "constant" factor, depends on

('2 "-1 )"1 )?

It turns out that such polynomial solutions are not possible in the general case

(assuming that P $ NP). In particular, we have the following result.

Theorem 5.1:
Let t1 and (2 be real numbers such that 0 S t 1 S (2 ( 1/8. Then

E 1 ,42 -Approximate 1 -Embeddability of integer-weighted graphs Is NP-complete.

Proof:
We note that the embeddability properties of the graphs used In the proof of

Theorem 4.1 depend only on cycles of length no greater than 16 having edges

whose lengths are multiples of 1. It follows from this that, for any 4 ( 1/8, any

such graph Is (-approximately i-embeddable iff It Is (exactly) 1-embeddable,
and the desired result is at hand. 0

It Is Interesting to examine Theorem 5.1 to see just what It Is saying In terms of

language recognition. For each non-negative real number, E, let L, be the language

consisting of all descriptions (in some agreed-upon form) of i-approximately

1-embeddable integer-weighted graphs. For each E in the Interval [0,1/8), the

language L. Is a superset of L0 and a strict subset of 11/8. There are also many

other languages which contain L0 and are contained In L,, for some t ( 1/8, but

which are not equal to L, for any . Theorem 5.1 says that every one of these



WEIGHTED GRAPH EMBEDOABILITY 11

languages Is strongly NP-hard.

It Is Interesting to note that Approximate 1 -Embeddability problems restricted to

graphs consisting of a single cycle (such as were used In the proof of Theorem 3.2)
are always solvable in polynomial time if e 2 is positive.6 This shows that the weak

NP-completeness result given In Section 3 does not say all there was to say about

the difficulty of the practical (i.e., with inexact data, etc.) form of the problem.

Loosely speaking, we could say that we have shown the notion of strong vs. weak

NP-completeness to be significant even for problems that naturally involve reals

rather than integers. It should be noted, however, that Theorem 5.1 followed not

from Theorem 4.4 but rather from the particular construction used In the proof of

* Theorem 4.4.

The proof of Theorem 5.1 depended on the fact that, for sufficiently small 4,

4-approximate 1-embeddability is equivalent to ordinary 1-embeddability for the

class of weighted graphs we constructed In our proof of Theorem 4.1. By making

this same observation regarding approximate k-embeddabillty of the weighted

graphs constructed in the proof of Theorem 4.4, we arrive at the following result.

Theorem 5.2:
Let k be any positive integer. Then there exists a positive real number, 4,
such that O,c-Approximate k-Embeddabillty of integer-weighted graphs Is

NP-hard.

Proof:
The argument Is outlined in the above text. Details are left to the reader. 03

It has also been pointed out 7 that 41,4 2 -Approximate k-Embeddabllity of

eThia follows from the existence of fast approximation algoriths for Partitim. See, for oxawpe, Lawver

7 The author reretfully cannot recall which participant at the 1979 Allerton conferete mde this eheivele

he Is willing and eager to accept reminders or cles.
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integer-weighted graphs Is In NP6 whenever 42> (1. This may be seen by

considering an algorithm which nondeterministically assigns vertices to points In

k-space whose coordinates must all be multiples of 42-(0/0/2.

6. Ambiguous Embedding Problems

Another variation on the embeddability problem that may arise in practical

applications is that of "ambiguity of solution." Given an incomplete weighted graph

and some embedding of that graph into a Euclidean space, we may wish to know

whether the given embedding Is unique. For example, are the nodes of our sensor

network really where we think they are, or might they be in some very different

configuration? To pose the problem more precisely, we Introduce the following

definitions.

Definitions:

Let G be a weighted graph and k be a positive Integer. Then two

k-embeddings, f and g, of G are said to be congruent iff for each two vertices,

u and v, of G. If(u)-f(v)l = Ig(u)-g(v)j. A k-embedding, f, of G Is said to be

unique (up to congruence) iff every k-embedding of G Is congruent to f, and in

this case G is said to be uniquely k-embeddable. If G has two or more

non-congruent k-embeddings, then G is ambiguously k-embeddable.

For any positive Integer, k, we may now define the problem of Ambiguous

k-Embedding as follows:

Problem (Ambiguous k-Embedding):

Given a weighted graph, G, and a k-embedding, f, of G, determine whether G Is

ambiguously k-embeddable (i.e., whether there exists a k-embedding of G

which is not congruent to f).

In this section, we will show that the Ambiguous Embedding problems defined

above are just as hard as the ordinary Embeddability problems we studied In

8Strictly speaking, at least one language including all descriptions of ( 1-approximately k-enbeddme

integm-weighted graphs and containing only descriptions of 42 -approximately k-embeddalble integer-weighed
grapi t Is in NP.
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Sections 2 through 4. The methods we will use are of general interest in that they

are potentially applicable to "ambiguous" versions of many other NP-complete

problems.

We will begin by formalizing the idea of "ambiguous" versions of problems. Since

we hope that the methods of this section will find more widespread application, we

will work in a more general setting than is necessary for the task at hand. For this

same reason, our presentation of these ideas will be somewhat more formal and

more attentive to mathematical fine points than it would be otherwise.

For the purpose of relating a problem, X, to the language classes P and NP, we

normally phrase X as a recognition problem; we identify X with a language, L, such

that we may ask whether any Instance, I, of X Is in L. We are concerned here with

cases In which the defining property of L is that I is In L Iff there exists some

object, 0, such that P(1,0), for some fixed predicate, P, which we call a defnning

predicate for X. 9 In such a case, we refer to an 0 such that P(1,0) as a solution

of i.

We sometimes wish to regard two solutions of (an Instance of) a problem as

essentially the same even if they are not actually identical. We may do this by

Introducing an equivalence relation, N, on the space of potential solutions. Note that

* must be such that if 0 n 0' then for any problem instance, I, P(1,0) iff P(1,0); such

an equivalence relation Is said to respect the predicate P. Given a problem, X,

defined by a predicate, P, and given an equivalence relation, 3, which respects P,

we may define an "ambiguous" version of X as follows:

Problem (Ambiguous X up to I):
Given an instance, I, of X and a solution, 0, of I, determine whether there
exists a solution, 0', of I such that 0' 0 0.

Note that the problem of Ambiguous k-Embedding defined above may now be

Ofor example, If X is the problem of 1-Embeddebility of integer-weighted graph*, then an instanem, I, of X Is a
description of an integer-weighted graphl the language, L, consists of lN descriptions of 1-*ebedd•Me
integer-weighted graphs; and the predicate, P, might be defined so that P(IO) is TRUE Iff 0 Is a 1-eedInM of
the integer-welghted graph described by 1.
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described as "Ambiguous k-Embeddabiiity up to congruence." A subtle point which

may have escaped the reader's attention Is that different predicates may define

the same language,10 and the definition of "Ambiguous X up to IF* depends on the

defining predicate, P, as well as on 5. In the text beiow, the Intended P should

always be clear from context.

When we speak of "Ambiguous X" (without mention of any v), for -some previously

defined X, we will mean "Ambiguous X with respect to equality." Following this

convention, we can embark on the path to showing the NP-hardness of Ambiguous

k-Embedding problems, by defining the problems of Ambiguous 3-Satisfilability and

Ambiguous 4-Satisfilability as follows:

Problems (Ambiguous 3-(4-)Satisfiability):
Given an expression, E, In 3-CNF (resp. 4-CNF) and an assignment of truth
values for the variables of E which satisfies E, determine whether there exists
any other assignment which satisfies E.

Lemma 6.1:
Ambiguous 4-Satisfiability Is NP-complete.

Proof:
We will proceed by reduction from 3-Satisfilability. Consider an expression, E,
In 3-CNF with variables Xl,..,XN and clauses Cl,...,CM. We Introduce a new
variable, Y, and dlef ine a function, F, on Y and the Xjas follows:

F a(YAIX) V ( AE)

- ( IF Xj)A (YVE)

ll ( VN I) A 15 jYV Cp.

Iohsfact is used I* great adv antage in the recent work on fast probabilistic tests for primality (soec, for
example, Rabin t 1978]). Briefly, the usual defining predicate for the problem of Compositeness (given a positive
inteW.er, Is cI composite?) is given by P(QO) LE 0 is an integer divisor of I such that 1(001. Unfortunately, by ts
definition solutions for a given instance may be very rare and hard to find, a3 In the case wee IeI the product of
two large primes. The fast probabilistic tests rely on other *delining* predicates for Compouiteness for which
solutions (called *WitnQS3Se

M in the literature) art guaranteed to be commnon.
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Note. that F may be satisfiled by assigning the value TRUE to Y and to all the X1.
Any other assignment can satisfy F iff It makes Y FALSE and assigns truth
Values to the X, In a way that Satisfies E. Finally, It Is clear that a 4-ClIF
expression for F can be constructed from E In polynomial time. 0

Lemma 5.2:
Ambiguous 3-Satisf lability Is NP-complete.

Proof:
We will show a polynomial-time reduction from Ambiguous 4-Satiefiability to
Ambiguous 3-Satisfiability. Consider any expression, E, In 4-CNF. For each
clause, C1 v Lj,1 .LJ,24.Lj,3.Lj,4 (where Lj, I, Lj,2t Lj,3, and Lj,4 are literals of
E), of E we Introduce a new variable, 0j, and define C)as the following
conjunction of clauses:

C) (Lj, I V Lj,2 V Q) A (Lj, 3V 1 ,4 VQj) A ([J,3 V Lj,4 V Q) A

([1,3 V E,4 V Q) A (L,3 V LJ,4VO%).

Note that for each assignment of truth values to Lp,, Lj,2, Lj,3, and Lj,4 such
that Cj Is satisfied there Is exactly one assignment for Qjsuch that C)is
satisfiled. 1 We define El as the conjunction of all the C). It follows. that for
each assignment, A, to the variables, Xi, of E which Satisfies E there Is exactly
one assignment, 8, of the Gi such that El 13 satisfied by AU B. Finally, It Is
clear that .E' and 8 can be computed In polynomial time from E and A. 0

In the previous proof, we reduced Ambiguous 4-Satisfiablity to Ambiguous

3-Sat1sfiability by exhibiting a reduction from ordinary 4-Satisfiability to ordinary

8-Satisfiability In such a way that there exists a polynomial-time-computable 1-1

correspondence between the solutions (I.e., Satisfying assignments) Of Instance of

4-Satisflability (ie., an expression In 4-CNF) and the solutions of the Instance of

O-Satisfiability to which It Is reduced. We may generaize this technique by defining

1OIrawlflg a 0-varabe Unmi w~ for ft erW of 91 (wMt 0, aa S fifth variale) wIN mke goe MM of
tI" 8~ertOn iawSately cow.
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the concept of a solution-preserving reduction:

Definitions:
Let X and Y be problems defined by predicates PX and Py, respectively, and
let ex and !y be equivalence relations respecting PX and Py respectively.

Then a reduction from X to Y is a polynomial-time function from instances of X

to Instances of Y such that for any Instance, Ix of X, solutions for (IX) exist
iff solutions for Ix exist. A reduction is said to be solution-preserving from X
up to ! If there exists a 1-1 function, G, sending equivalence classes under

mx to equivalence classes under ry and having the following properties:

1. For any instance, IX, of X, the restriction of G to the set of all
equivalence classes whose elements are solutions to IX is onto
the set of all equivalence classes whose elements are solutions
to f(lx).

2. There exists a polynomial-time computable function, g, such that,
for any instance, IX , of X and any 1 2 solution, 0, of IX ,

g(1,O) ( G([O]),

where (0] Is the equivalence class (under zX) of which 0 Is a
representative.

We may now state a lemma which will be of use in proving the NP-hardness of the

"ambiguous" versions of various problems.

Lemma 6.3:
Let X and Y be problems defined by predicates PX and Py, respectively, and
let mX and ry be iquivalence relations which respect PX and Py, respectively.

Let f be a reduction from X to Y which is solution-preserving from 8) up to my.

Suppose that Ambiguous Y tip to -y is NP-hard. Then Ambiguous X up to EX Is

NP-hard.

12 Please go back and finish reading the definition before looking at this footnote. There is suabtle point being
glossed over here. The function q must operate on representations of solutions rather than actual solutions, and
not ill solutions will necessarily be representable (for example, any weighted graph of three vertices and two
edges has uncountably many 2-embeddings which are distinct with respect to congruence). Note that the definition
of "Ambiguous X up to a X. depends on the selection of some scheme for representing solutiors to insUtnces of X.
We only require g(1,O) to be defined in the case that 0 is representable under the chosen scheme.
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Proof:

Produce functions G and g as given by the preceding definition. We note that

any Instance, (Ix,OX ) of Ambiguous X up to EX can be reduced In polynomial

time to (ly,Oy), where By = f(I X ) and Oy a g(Ix,Ox). Moreover By has solutions

which are not equivalent to Oy under my Iff IX has solutions which are not
equivalent to OX under nX . 0

Observe that our proof of Lemma 6.2 depends simply on the fact that the

transformation from E to E' is a reduction from 4-Satisfiability to 3-Satisfiabillty

which is solution-preserving from equality up to equality. We now employ Lemma 6.3

to show the results claimed at the beginning of this section.

Theorem 6.4:

Ambiguous 1-Embedding of (1,2)-weighted graphs is NP-complete and
Ambiguous k-Embedding of (1,2)-weighted graphs Is NP-hard for any positive

Integer k.

Proof:
This result is a consequence by Lemma 6.3 of the following easily verified

facts:

1. The reduction used In the proof of Theorem 4.1 is
solution-preserving from equality up to congruence In 1-space.

2. For any positive integer, k, the reduction used in the proof of
Corollary 4.3 is solution preserving from congruence In k-space
up to congruence In k-space.

3. For any positive integer, k, the reduction used In the proof of
Lemma 4.4 Is solution preserving from congruence In k-space up
to congruence in (k+1 )-space.

0

Corollary 6.5:

Ambiguous 1-Embedding of Integer-weighted graphs s strongly NP-complete
and Ambiguous k-Embedding of Integer-weighted graphs is strongly NP-hard for

any positive integer, k.
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Proof:

Trivial 'rom Theorem 6.4. 0

7. Conclusions

The results of this paper fall Into two classes, those of Interest to persons

concerned with embedding problems (such as the sensor positioning problem) and

those that are of more general theoretical Interest. To those concerned with finding

efficient solutions to the Embedding problem (given a weighted graph, find "the"

embedding), these results say what all NP-completeness results say: "You are

trying to solve the wrong problem." Rather than looking for an efficient worst-case

algorithm, It would be more promising to seek an algorithm that gives good

performance In cases which arise in practice (for example, cases In which the graph

Is highly overconstrained). Pursuing this topic, we present in Appendix II a

linear-time algorithm for determining whether any complete graph Is k-embeddable

(for any fixed k). Some other positive results are given by Yemini [1979].

The most specific result of theoretical interest is our discovery of some new

strongly NP-hard geometric problems, and our use of some Interesting gadgets to

carry out the proofs of NP-hardness. Of more general Interest are the two new

classes of problems Introduced In Sections 5 and 6. The "' 11, 2 -approximate"

problems introduced in Section 5 offer a new way of looking at the notion of

NP-completeness in the context of problems involving continuous variables. As we

have seen, weak NP-completeness may not say all there Is to say In this context.

"Ambiguous solution" problems address the question of determining whether a known

solution to a problem is in fact the unique solution. In Section 6, we exhibited a

fundamental NP-complete problem, 3-Satisfiability, whose ambiguous version Is also

NP-complete, and exhibited a method for obtaining new NP-completeness results for

"ambiguous" versions of other problems, namely the use of reductions that preserve

uniqueness of solution.
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Appendix I: Reduction from Bandwidth Minimization

In this appendix we give a second proof of Theorem 4.2, using a reduction from

the problem of Bandwidth Minimization.

Definitions:
Let G be a graph with vertex set V, and let N a IV. A layout of 6 Is a
one-to-one mapping, f, from V onto (1,...,N). The bandwidth of f Is defined as

the maximum distance between the Images under f of any two vertices that

• .- j
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are connected by an edge of G. That is,

bandwidth(f) z max(If(u)-f(v)I j {u,v) is an edge of G).

The bandwidth of G is defined as the least possible bandwidth for any layout

of G. Thus,

Bandwidth(G) = min(bandwidth(f) Jf is a layout of G).

Problem (Bandwidth Minimization):

Given an arbitrary graph, G, and a positive Integer, k, determine whether

Bandwidth(G) S k.

Bandwidth Minimization was shown to be NP-complete by Papadimitriou [1978].

Using this result, we can give a second proof of the following theorem:

Theorem 1.1 (Corollary 4.2):

1 -Embeddability of Integer-weighted graphs Is strongly NP-complete.

(Second) Proof:
We will proceed by reduction from Bandwidth Minimization. Let G be a graph of

N vertices, and let k be a positive Integer. We assume without loss of

generality that k S N. We now construct an edge-weighted graph, G1, as

follows:

1. For each vertex, v, of G, let there be a distinct vertex, v1, of G1.
G' will also have some additional vertices as required by the
remaining steps of the construction.

2. For each edge, (u,v), of G, connect ul and v by a chain of k
edges, one (it doesn't matter which) having weight (k 1)/2 and
the rest having weight 1/2.

3. For each two vertices, u and v, of G which are not connected by
an edge of G, connect u' and v' by a chain of N-1 edges, one
having weight N/2 and the rest having weight 1/2.

Note that for any bandwidth S k layout, f, of G, there exists at least one
1-embedding, fw, of G' such that f'(v') s f(v) for every vertex, v, of G. Similarly

from every 1-embedding of G' we can derive a bandwidth S k layout of G. If

we now double the weights of all the edges of G1, we get an Integer-weighted
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graph. G", having the following properties:

1. G" is 1 -embeddable iff G has a layout of bandwidth 5 k and

2. A representation of G" with all edge weights given In unary has
size polynomial in the size of a representation of G, and can be
computed from a representation of G In polynomial time.

This completes the proof. 0

It Is Interesting to note that this construction can not be used as a basis for the

results of Sections 5 and 6. This underscores our earlier remark that the proof of

Theorem 5.1 relies not simply on the strong NP-completeness of 1 -Embeddability of

integer-weighted graphs, but on the particular construction used in the proof of

Theorem 4.1.

Appendix I1: Embeddability of Complete Graphs

In this appendix, we exhibit a class of polynomial-time algorithms due to Shamos

[1978] for testing the k-embeddability of complete weighted graphs. For purposes

of exposition, we assume a model in which real numbers are primitive data objects

on which exact arithmetic operations (including comparisons and extraction of

square roots) can be performed in constant time. Within this model, we have the

following result.

Theorem 11.1:
Let It be any positive integer. Then there exists an algorithm for testing the
k-Embeddability of complete weighted graphs which runs In time linear In the
number of edges (or, equivalently, quadratic in the number of vertices) of the
graph being tested.

Proof:

Let G a V,E,W) be a complete weighted graph with N vertices, X,..,XN. To
test the embeddability of G, we will attempt to position successively the
vertices of Q In a (kI 1)-dimensional coordinate space. Without loss of
generality, we may send X1 to the origin and X2 to (W((X 1 ,X2 J),O,...,O). For
each M, I;M ;N, we define
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D(M) m rainj the complete weighted graph on (X 1 1j5iSIM) induced
from G is j-embeddable).

If the Induced weighted graph on (X 1 ,...,XM) is not j-embeddable for any J,

then D(M) Is undefined. For each J, O_<j_<k, we define

P(J) = min (M I D(M) = J).

If there is no M such that D(M) a J, then P(J) Is undefined. Note that If P(J) Is

well defined, then P(O),...,P(J) are all defined and distinct. As we locate each

vertex, we enforce the restriction that at most the first D(M) coordinates of

XM may be non-zero. By following this rule, we guarantee that after the XM

has been located (If this is possible), we will know the value of D(M) and of
P(O),...,P(D(M)). The procedure for locating the XM+1 (for 1<M(N) is as

follows:

1. Note that there is at most one possible location for XM+1 which
will satisfy the following criteria:

-The correct weights are Induced for the D(M) 1 edges
(Xp(j),XM+ 1 } O_<J_<D(M).

-At most the first D(M)+1 coordinates of the location are

non-zero.

- The (D(M)+ 1 )-st coordinate of the location Is
non-negative.

This location, If it exists, may be discovered In constant time,

since we will always have D(M) : k.

2. If there are no such locations, or if the (k+l)-st coordinate of the
unique location satisfying the criteria is non-zero, halt asserting
that G is not k-embeddable. Otherwise, without loss of
generality, assign XM+1 to the unique location satisfying the
criteria.

3. Check that the weights induced for the remaining (XI,XMf i)
(where li_<M and iWP(J) for any j) are correct. If any are not,

then halt asserting that G is not k-embeddable. Note that the

time for this step is O(N), since we always have M < N.

If we manage to place all the vertices without discovering that Q Is not

k-embeddable, then we will have found a k-embedding for Q (and this

embedding Is unique up to congruence). In any case, the time required Is linear
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in the number of edges and the space will be linear In the number of vertices.

03

It may be noted that the algorithm given here will not only work for complete

weighted graphs, but may be generalized to apply to a large class of Incomplete

weighted graphs as well; it is only necessary that It be possible to order the

vertices such that, when we attempt to locate the vertices In order, each vertex is

connected to sufficiently many previously-located vertices that the new vertex can

be assigned a unique location without loss of generality. To see the limits of this

generalization, however, we need only consider the graph shown In Figure 11.1. If

the vertices of this graph are assigned to points in the plane In such a way that no

three are colirrear, then a set of edge weights will be induced which make the graph

uniquely 2-embeddable. But if any vertex is removed, the weighted subgraph

Induced on the remaining five vertices will have infinitely many non-congruent

2-embeddings.

Figure 1.1 A uniquely embeddable graph with no triangles.

Further explorations In this direction would take us beyond the scope of this

paper. Yemini (1978] exhibits a number of Interesting "counterexamples" of the

flavor of Figure 11.1. We also leave untouched the Issues of numerical stability

which arise when the preceding algorithm Is performed with Inexact arithmetic, and

possibly on inexact data.
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Abstract

In this paper we investigate the problem of testing the bandwidth of a graph:
Given a graph, G, can the vertices of G be mapped to distinct positive integers so
that no edge of G has Its endpoints mapped to integers which differ by more than
some fixed constant, k? We exhibit an algorithm to solve this problem In
O(f(k)Nk + l) time, where N Is the number of vertices of G and f(k) depends only on k.
This result implies that the "Bandwidth k" problem Is not NP-Complete (unless
P a NP) for any fixed k, answering an open question of Garey, Graham, Johnson, and
Knuth. We also show how the algorithm can be modified to solve some other
problems closely related to the "Bandwidth? k- problem.
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.1 Introduction

The subject of this paper is the computational complexity of a problem on graph.

To speak precisely of the problem, we will, need the following notation and

definitions.

Nlotation:
Let u and v be vertices at a graph G. We will say "u-v In 6" to denote that
(u,v) Is an edge of G. Where 6 13 clear from context, we wIli write simply
"u-v".

Definitions:
Let G be a graph with vertex set V, and let N JVJ. A layout of Q Is a
one-to-one mapping, f, from V onto (1 ,...,N). The bandwidth of f Is defined as
the Maximum distance between the Images under f ot any two vertices that
are connected by an edge of 6. That Is,

bandwldth(f) r max~f(u)-t(v) I u-v).

The bandwidth of G Is defined as the least possible bandwidth for any layout
of G. Thus,

Bandwidth(G) zmin(bandwidth(f) I f Is a layout of G).

Problem (Bandwidth Minimization):-
Given an arbitrary graph, G, and a positive Integer, It, determine whether
BandwIdth(Q)S k.

Note that the notion of graph bandwidth Is equivalent to the owe familiar notion

of matrix bandwidth In that Bandwidth() k ft there exists a permutation matrix P

such that (PCP . 1)1,j * 0 whenever 11-ji > It, where C Is G's connection matrix. For

any particular positive Integer It, we can define a restricted version of the

bandwidth minimization problem as follow$.-

Problem (Bandwidth IZQ
Given a graph, 6, determine whether BandwldthQ3) I It.
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Papadimitriou [1976) has shown that the general bandwidth minimization problem,

In which k is specified in the input, is NP-Complete. The problem was later studied

by Garey, Graham, Johnson, and Knuth [1978], who found a linear-time algorithm for

the the problem "Bandwidth s 2", and also Improved on Papidimitriouls result by

showing the problem for general k to be NP-Complete even when G is restricted to

be a tree with no vertex of degree greater than three. A number of questions are

left open by their work, however. One such question is whether there exists a

polynomial-time algorithm for the problem "Bandwidths' 3". In this paper, we will

answer this question affirmatively by exhibiting an algorithmI which solves the

problem "Bandwidth I k" in polynomial time for any fixed k. Section 2 of this paper

Introduces the fundamental concepts and assumptions we will use In describing our

algorithm. In Section 3 the algorithm Is described and Its performance is analyzed,

In Section 4 we discuss some modifications of the algorithm to solve related

problems. Finally, In Section 5, we discuss some remaining open problems.

2 Fundamental Concepts and Assumptions

Throughout the following we will assume that G denotes a graph with vertex set V

and edge set E, that k denotes a particular positive integer, 2 and that we wish to

determine whether G has any layout of bandwidth S k. We let N denote the

cardinality of V. Note that If G is not connected then G has a layout of bandwidth S

k iff each of Its components has such a layout. Also, It Is clearly Impossible for 6 to

have such a layout It 6 has any vertex of degree 2k or greater. We therefore

assume, without loss of generality, that G is a connected graph having no vertex of

degree greater than or equal to 2k. Note that an arbitrary graph can be partitioned

into Its connected components by depth-first search in O(max(n,e)) time, where n Is

the number of vertices and e is the number of edges,8 and that this is O(n) If a

1More correctly, a class of alwithms, one for each value of k.

ZWhon using le -big-oh- notation, we will regard k ms fixed and therefore omit factors ftl depend only an k.

386a, for eIanipio, Ah, Hoperoft, and UlIman [ 1974, chapter 5].
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fixed bound is given on the degree of any vertex. Moreover, an obvious

modification to the depth-first search algorithm allows it to detect the presence of a

vertex with degree greater than a fixed bound in time which Is proportional only to

the number of vertices and not to the number of edges.

We now Introduce the key notion of a partial layout.

Definitions:

A partial layout of G is a one-to-one function, f, from some subset of V onto

(1 ,...,M), for some M such that 0 M S N. We say that f is feasible If It can be

extended to a (total) layout, g, such that bandwidth(g) S k. The bandwidth of

f Is the maximum distance between the Images of any two edge-connected

vertices of G which are in the domain of f. If u-v and u Is In the domain of f

and g is not, then the edge (uv) is said to be danglng from f.

Consider a partial layout, f, of size M. Clearly, f cannot possibly be feasible

unless

1. bandwidth(f) ; k, and

2. whenever u and v are vertices of G such that f(u) ( M-k and u-v, v i
also In the domain of f.

If f satisfies both these conditions, then f Is said to be a plausible partial layout.

The sequence (f'l (max(M-k,1,1),...,f 1 (M)), taken together with the set of dangling

edges of f, Is called the activse o of f. We now come to the thewee on which

our principal algorithm depends.

Theorem 2.1:

Let f and g be two plausible partial layouts of Q having kientical active

regions. Then,

1. f and g have Identical domains, and

2. 1 Is feasible Iff g Is feasible.

Proof:

Since Q Is connected, the domains of f and g must each consist precisely of

those vertices which are path-connected to vertices In the active region by
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paths not Including any dangling edges. Thus, (1) holds. To see that (2) holds,
we need only note that any assignment of the remaining vertices which
extends either f or g to a total layout of bandwidth S k must also extend the
other to such a layout. 0

Finally, we define the notion of a successor of a plausible partial layout (or active

region), which will be necessary to explain our algorithms.

Definition:
Let f be a plausible partial layout of G. Then a successor of f is a plausible
partial layout, g, which extends f by precisely one element. In this case, the
active region of g is also said to be a successor of the active region of f. We
also say that (the active region of) f is a predecessor of (the active region of)

g.

3 The Algorithm

Theorem 2.1 allows us to say that two plausible partial layouts are equivalent if

they have identical active regions. The algorithm we present Is essentially a

breadth-first search over the space of all the induced equivalence classes of

plausible partial layouts, where each such equivalence class Is uniquely

characterized by active region of its representatives. Alternatively, we may think

of the algorithm as a dynamic-programming search over the plausible partial layouts.

Each active region consists of at most k vertices end each vertex has no more then

2k edges, each of which may or may not be dangling. Thus the number of

equivalence classes Is bounded above by4

I(N)(22k~l O(Nk).

Our algorithm uses the following two data structures:

1. A (fifo) queue, Q, whose elements are active regions.

4As we will mention in Section 5, Me coefficient on this botud is quite loose.
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2. An array, A, which contains one element for each possible active
region. Each element, A[r], of A consists of a Boolean flag,
A[r].examined, telling whether the active region r has already been
considered In the search and a list, A[r].unplaced, of vertices which Is
Intended to list all vertices NOT in the domain of each plausible partial
layout with active region r.

At the start of our algorithm, 0 is initialized to contain the single element

representing the active region (henceforward denoted f) of the empty partial

layout, #. The flag A[I].examined Is set to TRUE and A[f]unplaced Is initialized to

list all the elements of V. The remaining A[r].examined are initially FALSE, and the

remaining A[r].unplaced are uninitialized. The algorithm now proceeds as follows:

Algorithm B (Bandwidth testing):-

1. Extract an active region, r, from the head of Q.

2. From A[r].unplaced, determine the successors of r.

3. For each successor, a, of r such that A[sj.examined Is FALSE, perform
the following steps:

a. Set A[s].examtned to TRUE.

b. Compute A[s].unpiaced by deleting the last vertex of a from
A[r].unplaced.

c. If A[r].unplaced Is the empty set, then halt asserting that
Bandwidth(G) S k.

d. Insert a at the end of Q.

4. If 0 Is empty, then halt asserting that Bandwidth(G) ) k. Otherwise, go
to Step 1.

The space required by this algorithm is clearly O(Nk*1 ). To determine the running

time, we note first that since there are O(Nk) possible active regions, each of Steps

1 through 4 will be executed O(Nk) times. The individual executions of Steps I and

4 each take only constant time, so the contribution of these steps to the total

running time of the algorithm Is o(N k). Since any active region, r, has at moat N

successors (zero or one for each element of A[r].unplaced), each execution of Stop

2 takes O(N) time. The contribution of Step 2 to the total execution time Is

m1
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therefore O(Nk+l). Determining the contribution of Step 3 is (a little) trickier.

During a single execution of Step 3, Steps 3.a through 3.d may be executed as

many as N times, and the amount of computation in Step 3.b may be 9(N). Thus It

appears possible that Step 3 may contribute O(Nk+ 2 ) to the total execution time. If

we look more carefully, however, we see that 3.a through 3.d are executed at nost

once for each active region. Thus the total contribution of Step 3 Is O(Nk+l).

Adding the contributions of all the steps gives us the following result.

Theorem 3.1:

Let k be any positive integer. Then there is an algorithm which solves the
problem "Bandwidth < k" using O(Nk~l time and

Proof:

To test the bandwidth of G, we first perform an O(N)-time depth first search

which either

(1) determines that G has some vertex of degree greater than 2k, or

(2) partitions G into connected components none of which have any

-vertex of degree greater than 2k.

In case (1), we know Immediately that Bandwidth(G) _> k. In case (2), we apply

Algorithm B to the connected components of G. 0

While Algorithm B will tell us whether G has a layout of bandwidth : k, It does not

actually produce such a layout. In order to allow such a layout to be recovered, we

may associate with each active region, s, an additional field, A[s].predecessor.

When s Is appended to 0 In Step S.f., we make A[s].predecessor point to a

predecessor of s (namely the r we chose in Step 1).5 If the algorithm finds an

active region, t, such that A[t].unplaced is empty, it Is a simple matter to recover a

layout by tracing back through the predecessor fields.

5 Note that this pointer need only name the single vertex (if any) which is contained in bout not in a.
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4 Modifications for Related Problems

Another question left open by Garey, Graham, Johnson, and Knuth (1078] Is

whether there exists a polynomial-time algorithm to count the layouts of a graph

having bandwidth S k, even for k a 2. We now give an affirmative answer to a

closely related question by exhibiting a class of polynomial-time algorithms (one for

each positive Integer k) for determining the number of bandwidth S k layouts of any

connected graph.

Our algorithm for enumerating layouts of bandwidth S k is a slightly modified form

of Algorithm B. The data structures are the same as those for Algorithm B, with the

following additions:

1. Each entry, A[r], of A has a third field, A[r].count, which will hold the
number of (so far discovered) plausible partial layouts whose active
region is r.

2. There is a variable, Total, which will hold the number of (so far
discovered) layouts of bandwidth S k.

At the start of the algorithm, Total and al the A[r].count are Initialized to zero,

except for A[], which is Initialized to 1. The remaining variables are initialized as

for Algorithm B. We then proceed as follows:

Algorithm E (Enumerate layouts):

1. Extract an active region, r, from the head of 0.

2. From A[r].unplaced, determine the successors of r.

3. For each successor, s, of r, perform the following steps:

a. If .A(s].examlned Is TRUE, go to f.

b. Set A[s].examlned to TRUE.

c. Compute A(s].unplaced by deleting the last vertex of a from

ONo that the nuer of bwwwdt ( k aywuts of in arbrary raph is not urhquey determnwed by the nmsbers
of bandwidth ( k layouts of its cormeted components because the lopologlm of the cenponmMs bpe
constraints on how the various layouts my ovwlap. The algoitlems canot be applied dretly to nion-eu'soled
Wapt became they dope on Theorem 2.1.

I--
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A(r].unplaced.

d. If A[r].unplaced Is the empty set, then Increase Total by
A[r].count.

e. Insert s at the end of 0.

1. Increase A[s].count by A[r].count.

4. If G is empty, then halt. Otherwise, go to Step 1.

Study of this algorithm gives us the following result:

Theorem 4.1:

Let k be any positive Integer. Then there exists an O(Nk+l)-time,

O(Nk l)-space algorithm which, given any connected graph, G, computes the

number of layouts of G having bandwidth < k.

Proof:
We claim that Algorithm E (preceded by a depth-first search to ensure that no

vertex of G has degree greater than 2k) has the desired properties. By an

analysis similar to that for Algorithm 8, Algorithm E will run in O(Nkl) time. We

must now show that it correctly counts the layouts of bandwidth _5 k. To do

this, it suffices to show that by the time that any plausible partial layout, r, Is

selected in Step 1, A[r].count contains the total number of plausible partial

layouts whose active region is r. This In turn may be shown Inductively If we

can only show that no active region, r, is chosen In Step 1 until every

predecessor of r has been chosen. This last follows at once from the fact

(which may be established by induction) that the active regions proceed

through the queue in non-decreasing order of their lengths, where the length

of an active region, r, Is defined to be the number of vertices In the domain of

any plausible partial layout whose active region is r. 0

We may view Bandwidth Minimization as the problem of finding a layout with

minimax edge length. We will now look at -the corresponding minisum problem.

Definition:
Let G be a graph with edge set E, and let f be a layout of G. Then the total

edge length of f Is given by the sum
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If(u)'f(v)l

(u,v) r E

where each edge, (u,v), contributes precisely once to the sum (rather than

once as u-v and once as v-u).

Problem: (Optimal Linear Arrangement)
Given a graph, G, and an integer, t, determine whether there Is a layout of G
having total edge less than or equal to t.

The Optimal Linear Arrangement (O.L.A.) problem was found to be NP-Complete by

Garey, Johnson, and Stockmeyer [1976]. However, Shamos [1979] has pointed out

that the methods of the present work can be used to provide polynomial-time

algorithms for a class of restricted versions of O.L.A. For every positive Integer, k,

we define a restriction of O.L.A. as follows:

Problem: (O.L.A. for bandwidth S k)
Given a graph, G, determine the minimal total edge length of any layout of Q
having bandwidth S k or determine that no such layout exists.

Applying the methods used above, we obtain the following result.

Theorem 4.2.
Let k be any positive integer. Then thqre exists an algorithm which solves
O.L.A. for bandwidth S k in O(Nk+l) time and O(Nk 1f ) space.

Proof:
An algorithm having the desired properties when applied to connected graph*
with no vertex having degree greater than 2k may be constructed by a elight
modification of Algorithm E: Instead of maintaining with each active region a
count of the partial layouts having that active region, we maintain an Indication
of the minimum hum of the lengths of all edges whose endpoints have are In
the domains of all plausible partial layouts having that active region. The
details are left to the reader. For arbitrary graphs we first perform a
depth-first search which either detects the presence of a vertex with degree
greater than 2k (Implying that Bandwidth(G) Z k) or partitions Q Into Its
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connected components, taking linear time in either case. We then compute the

minimal total edge length for G by finding and summing the minimal total edge

lengths for the connected components. 0

We note that the previous result remains valid if we consider edge weighted graphs

and the "total edge length" is taken as a weighted sum. For connected graphs, we

can also use the method of Algorithm E to obtain a count of the layouts with minimal

total edge length for bandwidth _ k.

Finally, all the previous results extend to "directed" versions of Bandwidth

Minimization and O.L.A., In which G is a directed graph and a layout, f, Is acceptable

only if f(u) ( f(v) whenever (u,v) is an edge of G.

5 Open Problems

The most obvious problem left open by this work Is that of Improving the

performance of Algorithm B. Although the expense of this algorithm is "only

polynomial" in the size of the examined graph it is still sufficiently expensive

(particularly in terms of space) to render it Impractical for all but the smallest cases

(consider, for example, determining whether Bandwidth(G) < 5, where G Is a graph of

forty vertices). The fact that Garey, Graham, Johnson, and Knuth [1978] have a

linear-time algorithm for "Bandwidth(G) ? 2", while Algorithm B takes cubic time for

the same problem offers some hope that the degree of the polynomial can be

reduced for higher values of k as well. Indzed, it Is conceivable (even if P i NP)

that there are linear algorithms for all values of k, with coefficients growing

exponentially In k.

One approach to Improving the performance is to attempt to reduce the number of

active regions examined, and this can indeed be done to some extent. For example,

we may prune the search by noting that, while a plausible partial layout may have

#(k2) dangling edges, such a partial layout cannot actually be feasible If those

edges lead to more than k distinct vertices. Unfortunately, graphs of the form

Agoo startiq point for the reader who is intereslod in lewnng more about Bandwidth. O.L.A.. and their

variations is Appendix AI of Oaey and Johnson £1979].
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VI -v2--...--VN.1 -- vN

supply an existence proof that the number of equivalence classes of plausible

partial layouts of bandwidth :5 k can in fact be (Nk).

In Algorithm B, we reduce the search space from the set of all plausible partial

layouts to the much smaller set of equivalence classes of partial layouts. To look at

It another way, given two partial layouts, f and g, if we recognize (by equality of

active regions) that f Is feasible iff g is feasible, then we feel free to search for

completions of only one of the partial layouts. The algorithm of Garey, Graham,

Johnson, and Knuth cuts down the search space by methods which are similar but

more sophisticated. In particular, they can avoid searching for completions of a

partial layout,8 f, by choosing to search for completions of a layout, g, such that g Is

feasible whenever f is feasible, but not necessarily only when f is feasible.

It Is interesting to note that Nworst-case" numbers of feasible active regions

seem to arise precisely in circumstances where large pieces of the graph can be

laid out In bandwidth much less than k. We define a maximal graph of size N and

bandwidth k as a graph whose edge set is ((vi,vj) I ji-JIk), where (vi I ; SN) Is the

edge set.9 The algorithm of Garey, Graham, Johnson, and Knuth relies heavily on the

fact that if all the even numbered vertices or all the odd numbered vertices are

deleted from a maximal graph of bandwidth 2, the induced graph on the remaining

vertices Is a maximal graph of bandwidth 1. For testing higher bandwidths it is

possible that similar use may be made of the fact that deleting every k-th vertex

from a maximal graph of bandwidth k leaves a maximal graph of bandwidth k-1.

Another potentially fruitful course of investigation would be to look for efficient

algorithms for approximate bandwidth minimization. For example, given a graph, G,

we may wish to produce a layout for G whose bandwidth Is no more than, say, twice

8their terminolow, a partial layout of 0 is a mp from a aubset of the vertlces of 0 to an arbitrary set of
Iit4egif ao

Note that graph of N vertices has bandwidth ( k iff it is isomorphic to a subaph of a mximal graph of ize
N -nd bandwidth k.
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the minimum possible. To the author's knowldge it has not yet been determined

whether this problem (when phrased as a language recognition problem) is

NP-Complete.
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